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REPORT

Gene-Expression Variation Within and Among Human Populations
John D. Storey, Jennifer Madeoy, Jeanna L. Strout, Mark Wurfel, James Ronald, and Joshua M. Akey

Understanding patterns of gene-expression variation within and among human populations will provide important
insights into the molecular basis of phenotypic diversity and the interpretation of patterns of expression variation in
disease. However, little is known about how gene-expression variation is apportioned within and among human pop-
ulations. Here, we characterize patterns of natural gene-expression variation in 16 individuals of European and African
ancestry. We find extensive variation in gene-expression levels and estimate that ∼83% of genes are differentially expressed
among individuals and that ∼17% of genes are differentially expressed among populations. By decomposing total gene-
expression variation into within- versus among-population components, we find that most expression variation is due
to variation among individuals rather than among populations, which parallels observations of extant patterns of human
genetic variation. Finally, we performed allele-specific quantitative polymerase chain reaction to demonstrate that cis-
regulatory variation in the lymphocyte adaptor protein (SH2B adapter protein 3) contributes to differential expression
between European and African samples. These results provide the first insight into how human population structure
manifests itself in gene-expression levels and will help guide the search for regulatory quantitative trait loci.
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Gene expression is the primary mechanism by which in-
formation encoded in the genome is converted into devel-
opmental, morphological, and physiological phenotypes.1

Gene expression is also an important source of evolution-
ary change within and among species,2 and aberrant gene
expression has been implicated in the pathogenesis of nu-
merous diseases.3,4 Thus, understanding the amount,
structure, and patterns of gene-expression variation is of
fundamental importance to both biomedical research and
evolutionary biology.5

Although it is well known that 85%–95% of human ge-
netic variation is due to variation among individuals with-
in a population, whereas 5%–15% is attributable to varia-
tion among populations,6–9 it remains unclear whether sim-
ilar levels of within- versus among-population compo-
nents of variation will extend to higher-level phenotypes
such as gene-expression levels. Whereas some prior work
on gene-expression differences among human popula-
tions has been done in the context of disease studies,10,11

to our knowledge, there have been no systematic and
quantitative attempts to apportion natural variation in
gene-expression levels into within- and among-popula-
tion components akin to several excellent studies in
model organisms.5,12–14

To begin to address these issues, we used Affymetrix
Human Focus Arrays to study gene-expression levels in B
lymphoblastoid cells derived from eight unrelated individ-
uals of northern and western European ancestry (CEU)
and eight unrelated individuals from the Yoruba of Iba-
dan, Nigeria (YRI). These samples are a subset of the CEU
and YRI individuals used in the International HapMap proj-
ect,15 and cell lines were obtained from the Coriell Cell

Repositories (samples GM06995, GM07029, GM07349,
GM10845, GM10851, GM10856, GM10857, GM10860,
GM19138, GM18516, GM18859, GM18871, GM18501,
GM18504, GM18507, and GM18522). All study individ-
uals were males, to eliminate the potential confounding
effects of sex on gene-expression levels.

We performed tissue culture and RNA extraction as de-
scribed elsewhere16,17 and assessed RNA integrity by mea-
suring the optical density 260/280 ratio and subjecting
the sample to analysis with the Agilent Bioanalyzer 2100.
Extracted RNA was labeled and hybridized according to
the manufacturer’s protocol (Affymetrix). We performed
quantile normalization and used the RMA algorithm to
combine probe-set intensities into a single measure of ex-
pression for each gene.18 Low-intensity probe sets that were
deemed absent in �50% of the arrays with use of the al-
gorithms implemented in MAS519 were discarded in sub-
sequent statistical analyses, resulting in 5,194 analyzable
probe sets. All reported results were robust to different nor-
malization methods and definitions of low-intensity genes
(results not shown). Technical replicates were obtained for
each individual, resulting in a total of 32 microarrays.

Of the ∼8,500 genes on the array, 5,194 were expressed
in lymphoblastoid cells, which is comparable with pre-
vious observations.17 We used a fully nested, mixed-model
analysis to identify genes differentially expressed among
individuals within populations and genes differentially ex-
pressed among populations (see appendix A). This model
allows tests of differential expression among individuals
to be performed while properly accounting for population
effects and technical variation. Similarly, it allows tests of
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Figure 1. Estimates of the proportion of genes differentially expressed within and among populations. Histograms of all P values
calculated for tests of differential expression among individuals within populations (a) and between the CEU and YRI samples (b) are
shown. The Y-axis is drawn to reflect a histogram density, such that the total area of all rectangles is 1. Under the null hypothesis of
no differential expression, we expect the P values to be uniformly distributed between 0 and 1, forming a histogram with frequencies
following the dashed black line. However, the observed P values in each graph are skewed toward 0, suggesting that these data sets
contain differentially expressed genes. Using methodology described elsewhere,22,25 we estimated that 82.6% of genes are differentially
expressed among individuals and that 17.4% of genes are differentially expressed between the CEU and YRI samples. The dashed red
lines indicate these estimates by showing that the P values close to 1 flatten out at a height of ∼17% (a) and 83% (b).

differential expression among populations while properly
accounting for individual effects and technical variation.

We used methodology described elsewhere22,25 to ana-
lyze the complete distribution of P values resulting from
tests of differential expression, to estimate the proportion
of all genes that are differentially expressed either within
or between the CEU and YRI samples. Under the null hy-
pothesis of no differential expression, we expect the P
values to be uniformly distributed between 0 and 1. Con-
versely, if the data set contains differentially expressed
genes, the distribution of P values will be skewed toward
0.22 We estimated that ∼83% of genes are differentially
expressed among individuals and ∼17% of genes are dif-
ferentially expressed between the CEU and YRI samples
(fig. 1). That these two percentages add up to 100% is a
coincidence; we found that the significance of tests for
differential expression within and among populations was
uncorrelated (see appendix A). The estimated proportion
of genes that possess interindividual variation is consis-
tent with previous studies describing pervasive cis-regu-
latory variation in humans.26–28 To our knowledge, there
have been no systematic studies of gene-expression dif-
ferences among human populations. Thus, these results
demonstrate substantial natural variation in gene-expres-
sion levels both within and among populations and show
that population structure exists in levels of transcript
abundance.

We next investigated the magnitude of expression dif-
ferences observed within and among populations, which,
in general, was relatively small (fig. 2). For example, of
the ∼83% of genes estimated to be differentially expressed

among individuals, 1,210 were significant at a false-dis-
covery rate (FDR) �1%. These genes varied by an average
factor of 1.25 across individuals (see fig. 2), although 20
loci varied by a factor of 2. Of the ∼17% of genes estimated
to be differentially expressed between the CEU and YRI
samples, 50 were significant at an FDR �20%. The average
absolute log2 difference in mean expression levels between
samples for these 50 genes was 0.73 (corresponding to a
1.65-fold change). Although the majority of observed gene-
expression differences within and between populations are
modest, even small perturbations in expression can have
significant functional and phenotypic consequences.29,30

The results for all tests of differential expression are pre-
sented in a tab-delimited txt file (online only).

To get a broad overview of the types of pathways that
differentially expressed genes participate in, we tested
whether they were overrepresented among PANTHER bio-
logical pathways.31 In this analysis, we considered the top
10% of genes differentially expressed either between in-
dividuals or between populations. Only two pathways
were nominally significant ( ) for genes differen-P p .05
tially expressed among individuals, and no pathways re-
mained significant after correction for multiple hypothesis
tests (table 1). Thus, gene-expression differences among
individuals are found in a wide variety of pathways, which
is consistent with our estimate that ∼83% of genes are
differentially expressed among individuals. Examples of
genes with large interindividual variation in expression
include RAGE (MIM *605762) and LRAP (MIM *609497),
the expression levels of which correlate with diabetic com-
plications32 and improper antigen processing,33 respec-
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Table 1. Enrichment of PANTHER Biological Pathways
among Differentially Expressed Genes

Sample Comparison and PANTHER Biological Pathway P

Individuals:
Inflammation mediated by chemokine and cytokine 1.91#10�2

T-cell activation 3.01#10�2

Populations:
Inflammation mediated by chemokine and cytokine 2.91#1054

Histamine H1 receptor–mediated signaling pathway 3.90#10�3

Toll-receptor signaling pathway 1.02#10�2

Fibroblast growth factor–signaling pathway 1.11#10�2

Vascular endothelial growth factor–signaling pathway 1.14#10�2

T-cell activation 1.32#10�2

EGF receptor–signaling pathway 1.53#10�2

B-cell activation 2.70#10�2

Notch-signaling pathway 2.99#10�2

Enkephalin release 2.99#10�2

5HT2 type receptor–mediated signaling pathway 4.24#10�2

NOTE.—All pathways nominally enriched at are shown; boldP p .05
type indicates significance after a Bonferroni correction for multiple hy-
pothesis tests.

Figure 2. Magnitude of expression differences within and between populations. a, Magnitude of gene-expression differences among
individuals, shown as the factor of variation (X-axis) versus Q value (Y-axis). The Q value is a measure of statistical significance in
terms of the FDR.22,25 For each gene, the factor of variation is calculated as the ratio of the maximum:minimum log2 expression level
across all individuals.5 b, Magnitude of gene-expression differences between populations, shown by a volcano plot of the average log2-
fold change between the CEU and YRI samples (X-axis) versus Q value (Y-axis). In panels a and b, the horizontal dashed lines at 0.17
and 0.83 indicate the estimated proportion of truly null hypotheses in tests of differential expression among individuals and between
the CEU and YRI samples, respectively.

tively. Genes differentially expressed between the CEU and
YRI samples were strongly enriched in inflammatory path-
ways, even after a strict Bonferroni correction for multiple-
hypothesis tests (table 1). Included in this set of genes are
several cytokines and chemokine receptors (CCL22 [MIM
*602957], CCL5 [MIM *187011], CCR2 [MIM *601267],
CCR7 [MIM *600242], and CXCR3 [MIM *300574]) that
have been implicated in numerous cardiovascular, infec-
tious, and immune-related diseases.34,35

Simply identifying genes differentially expressed within
or among populations may provide an incomplete view
of the quantitative details of gene-expression variation.
For instance, we found examples where expression varia-
tion was observed primarily between populations but not
individuals, both among individuals and between popula-
tions, or among individuals but not between populations
(fig. 3). Classifying genes by differential versus no differ-
ential expression fails to accurately reflect the quantitative
patterns of how expression variation is apportioned into
within- and among-population components; therefore, it
is important to investigate how much of total gene-ex-
pression variation is explained by individual and popu-
lation effects. To this end, for each gene, we estimated the
proportion of total gene-expression variation due to either
differences among individuals or differences between pop-
ulations, while properly taking into account technical var-
iation (see appendix A). The median proportion of vari-
ation due to interindividual variation is 0.85 (fig. 4), which
is nearly identical to levels of population structure ob-
served in extant patterns of human genetic variation.6–9

In addition, similar to estimates of genetic structure at
individual loci,7,36 the distribution of population structure

in expression levels across genes varies considerably (fig.
4).

To fully understand the genetic architecture of gene-
expression levels and how population structure influences
patterns of gene-expression variation, it will be necessary
both to confirm predictions from microarray data and to
delineate the molecular mechanisms governing regulatory
variation. To begin to address these issues, we performed
quantitative allele-specific PCR (qPCR) on SH2B3 (MIM
*605093), which encodes for an adaptor protein that reg-
ulates growth factor and cytokine receptor-mediated path-
ways37 and was in the top 1% of genes differentially ex-
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Figure 3. Patterns of gene-expression variation within and be-
tween the CEU and YRI samples. The log2 expression levels (av-
eraged across replicates) of each individual are shown for 20 genes
that are differentially expressed between the CEU and YRI samples
but exhibit little within-population variation (top), for 20 genes
that are differentially expressed both within and between popu-
lations (middle), and for 20 genes that are differentially expressed
among individuals but not between populations (bottom). For each
gene, the expression of each individual is expressed as the devia-
tion from the overall mean across all 16 individuals. Values range
in color from magenta to green, indicating expression levels rel-
atively smaller or larger, respectively, compared with the overall
mean. Black values indicate expression levels close to the overall
mean across individuals. The dendrograms on the X- and Y-axes
correspond to individuals and genes, respectively. The topology of
the dendrogram is based on the 50 genes differentially expressed
between the CEU and YRI samples.

pressed between the CEU and YRI samples. We generated
double-stranded cDNA and used TaqMan (Applied Biosys-
tems) allelic discrimination assays to interrogate the ex-
pression level of each allele for a SNP (rs1107853) in the
coding region of SH2B3, as described elsewhere.38 We con-
structed a dilution series of heterozygous genomic DNA
to estimate dye effects and differences in allele-specific
hybridization efficiency, as described elsewhere.38 To ob-
tain the overall expression level for each individual, we
summed the expression levels of the two alleles after ad-
justing for dye effects and hybridization effects. All qPCR
experiments were performed in triplicate.

In our microarray experiments, SH2B3 showed an av-
erage log2-fold change between the CEU and YRI samples
of 0.52 ( ; ). Consistent with the�4P p 6.5 # 10 FDR p 0.134
microarray data, the qPCR results also demonstrate that
SH2B3 is differentially expressed between the CEU and YRI
samples ( ) (fig. 5a). To better understand the mo-P p .0157
lecular basis for the observed difference in expression, we
asked whether the expression level of one allele was dif-
ferent from the other in heterozygous individuals. If so,
this provides evidence of cis-regulatory effects.26 There was
a significant difference ( ) in expression be-�3P p 1.18 # 10
tween alleles in heterozygous cDNA versus genomic DNA,
strongly suggesting cis-regulatory effects (fig. 5b).

Interestingly, these observations coincide with patterns
of genetic variation at SH2B3, since there are 13 SNPs with
large allele-frequency differences ( ) between theF � 0.45ST

CEU and YRI samples (fig. 5c). Five of these highly differ-
entiated SNPs occur in conserved regions, as determined
by alignment of 17 vertebrate genomes, making them
strong candidates for future functional studies. We cal-
culated the empirical probability of observing a SNP with
a pairwise between the CEU and YRI samples,F � 0.45ST

on the basis of all autosomal markers contained in Hap-
Map release 21, to be ∼0.05, and this magnitude of allele-
frequency difference is consistent with a signature of local
adaptation.7,39 SH2B3 also possesses unusually large levels
of linkage disequilibrium compared with the rest of the
genome,40 which provides additional support for the hy-
pothesis that this locus has been subject to adaptive evo-
lution, although additional studies will be necessary to
make more-definitive inferences about its evolutionary
history.

In summary, consistent with previous studies of model
organisms,5,12–14 our results demonstrate that considerable
natural variation in gene-expression levels exists within
and among human populations. Genes differentially ex-
pressed among populations may be particularly relevant
to explore as candidate susceptibility loci for diseases whose
prevalence varies as a function of ethnicity and may be
amenable to genetic dissection by admixture linkage-dis-
equilibrium mapping.41 Importantly, we also show that
simply focusing on differentially expressed genes can lead
to an incomplete understanding of how gene-expression
variation is apportioned within and among human pop-
ulations. By decomposing expression variation into its
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Figure 4. Distribution of the proportion of total gene-expression
variation explained by variation among individuals. The percentile
of the proportion of all genes (X-axis) versus the proportion of
total expression variation explained by interindividual differences
(Y-axis) is shown for the observed (solid black line) and randomized
(solid gray line) data. For example, the median (50th percentile)
(dashed red line) proportion of variation explained by differences
among individuals is 85%, leaving 15% explained by differences
between populations. The dashed blue lines indicate the inter-
quartile range. Note that the magnitude of total gene-expression
variation attributable to interindividual differences in the observed
data is considerably greater compared with the randomized data.

component sources, we find that, similar to that observed
for genetic variation, the majority of gene-expression var-
iation is due to differences among individuals rather than
among populations.

These observations are subject to several caveats, includ-
ing the fact that a relatively small number of individuals
and populations were studied and that expression levels
were measured only in a single (transformed) cell type.
For example, of the ∼17% of genes expressed in B lym-
phoblasts that we estimate to be differentially expressed
between the CEU and YRI samples, 50 could be identified
at an FDR !20%. Thus, to fully catalog the specific genes
that are differentially expressed, it will be necessary to
increase the sample size. In addition, it is plausible that
probes that overlap SNPs could lead to biased estimates
of gene-expression levels42 and confound our interpreta-
tion of gene-expression variation within and among pop-
ulations. Although the algorithms we used to normalize
the raw expression data and to combine individual probe
sets into an overall measure of gene expression should be
relatively robust to low levels of sequence divergence, it
remains a formal possibility that probes interrogating se-
quences with SNPs contribute to the observed patterns of
gene-expression variation. However, recent work suggests
that this is unlikely to have a large influence on estimates
of gene-expression levels among closely related popula-

tions.43–45 Despite these limitations, our results and meth-
odology provide the foundation for building a more prin-
cipled understanding of natural variation in gene-expres-
sion levels that will be useful for testing hypotheses of
regulatory evolution and interpreting patterns of expres-
sion variation in disease.
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Appendix A
Tests of Differential Expression Within and Among
Populations

We used the recently developed optimal discovery pro-
cedure20 (ODP), available in the EDGE (J.D.S.’s Web site)
software package,21 to test for differential expression be-
tween the CEU and YRI samples. We averaged technical
replicates for each individual and tested for a difference
in mean expression between samples, as detailed in the
ODP method and EDGE manual (J.D.S.’s Web site). This
produced an FDR Q value (J.D.S.’s Web site)22 for differ-
ential expression between samples for each gene, as well
as a conservative estimate of the total proportion of pop-
ulation–differentially expressed genes (∼17%). The ODP
is derived from the same principles yielding more-tradi-
tional methods, such as a t test and its popular microarray
extensions.23 However, the ODP is aimed at optimizing
a more relevant balance between true positive and false
positive results, to yield substantially greater power to
identify genes, as has been shown elsewhere.20 Although
the global estimate of the proportion of differentially ex-
pressed genes, on the basis of a t test, was not significantly
different from the ∼17% estimate produced by the ODP,
the power of the ODP to identify genes as significant was
substantially better here as well.

We formulated a new model of gene-expression varia-
tion from individuals in structured populations, to esti-
mate the proportion of expression variation due to dif-
ferences among individuals and among populations and
to identify genes showing differential expression within
populations. Specifically, we employed a mixed model in
which population effects were treated as fixed and indi-
vidual effects were treated as random. The model for each
gene can be written as: expressio aselin opula-n p b e � p
tio ndividua rror, where “baseline” is the fixedn � i l � e
baseline expression level, “population” is the fixed effect
due to potential differences between populations, “indi-
vidual” is the random effect representing each individual’s
potentially different average level of expression, and “er-
ror” represents the remaining random fluctuations in ex-
pression due to technical and measurement variation.
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Figure 5. Allele-specific qPCR analysis of SH2B3. a, Log2-fold change of SH2B3 expression for all CEU and YRI individuals, relative to
the average expression level in the YRI sample obtained from allele-specific qPCR. The distribution of SH2B3 expression is significantly
different between samples (t-test, ), which confirms the microarray results. b, Allele-specific qPCR of a coding polymorphismP p .0157
(rs1107853), which demonstrates that the log2-fold change of the G allele relative to the A allele is significantly different between
heterozygous DNA (Het DNA) and heterozygous cDNA (Het cDNA) samples (t-test, ). c, The gene structure of SH2B3, shownP p .00118
in blue with rectangles denoting exons. The arrow indicates transcriptional orientation. The graph below shows the distribution of
conservation scores (dark gray) (University of California–Santa Cruz Genome Browser) across the SH2B3 gene and pairwise FST values
(yellow) between the CEU and YRI samples for each SNP in this region (derived from HapMap phase II release 21 data).

Treating individual effects as fixed5 attributes too much
variation to interindividual differences, which leads to
substantial underbias in estimating the proportion of var-
iation due to population effects. The mixed model allows
for unbiased estimates of both population and interindi-
vidual differential expression effects and allows us to sep-
arate the technical and measurement errors from the bi-
ological signals of interest.

We fit the above model to each gene, by maximum like-
lihood under the assumption that the individual random
effects and error terms are normally distributed, using
the statistical software package R.24 From this, we obtained
point estimates of the fixed population effect (D), the var-
iance of the individual random effect (t2), and the variance
of the error term (j2) for each gene. We can show that the
total variance for a gene’s expression is equal to 2D �

. We calculated the proportion of variance explained2 2t � j

by population differences as the ratio of the variance due
to population differences to the sum of the variances due
to population differences and interindividual differences:

. The proportion of variance explained by in-2 2 2D /(D � t )
terindividual differences is equal to one minus this quan-
tity: . Note that the mixed model allowed us to2 2 2t /(D � t )
remove the nonbiological variance component when par-
titioning the variance into within- and among-population
components.

To test for differential expression among individuals, we
performed a hypothesis test for each gene, to determine
whether the variance corresponding to the individual ran-
dom effect (t2) is zero, where a nonzero variance indicates
the presence of interindividual differences in expression.
For each gene, the full model was fit by maximum like-
lihood, as described above, as well as the analogous model
with no individual random-effect term. The two models
were compared by a generalized likelihood-ratio statis-
tic. We simulated 1500,000 statistics from the null distri-
bution by permuting the individual labels within each
population and recomputing the generalized likelihood-
ratio statistics on these permuted data. The observed and
null statistics were then used to estimate an FDR Q value
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(J.D.S.’s Web site) for each gene as described elsewhere.22

This also provides a conservative estimate of the total pro-
portion (83%) of interindividual differentially expressed
genes.

Assessing Data Quality

We performed several diagnostic procedures to make
sure that the results derived from tests of differential ex-
pression within and among populations were genuine and
not confounded by technical artifacts. First, we observed
that the significance of these two types of differential ex-
pression appeared to be independent. Genes showed both
types of differential expression, only one type, or neither
type in proportions expected by chance, given the fact
that the two types of differential expression occur inde-
pendently. Second, the correlation of of thelog [p/(1 � p)]
two sets of P values was only 5%, which is well within the
range observed under random permutations of the P val-
ues. Third, the error-variance estimates did not show any
functional relationships with the estimated proportion of
variation due to interindividual or population differences,
indicating that our model successfully separated the bio-
logical signal of interest from the technical and measure-
ment errors.

Web Resources

The URLs for data presented herein are as follows:

Coriell Cell Repositories, http://ccr.coriell.org/
HapMap, http://www.hapmap.org/
J.D.S.’s Web site, http://faculty.washington.edu/˜jstorey/ (for the

EDGE and QVALUE software)
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for RAGE, LRAP, CCL22, CCL5, CCR2,
CCR7, CXCR3, and SH2B3)

PANTHER, http://www.pantherdb.org/ (to test for overrepresen-
tation of differentially expressed genes in biological pathways)

University of California–Santa Cruz Genome Browser, http://
genome.ucsc.edu/ (for conservation scores)
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